There have been other syntheses, including that of Schmidt, Boons, Wong, Seeberger (2002 and 2007), and Huang referenced in Danishefsky's paper, and an earlier synthesis of his as well which was too low-yielding. The ABC trisaccharide that will be incorporated later was synthesized according to the previously reported Cp2Zr(OTf)2-mediated coupling. The starting material was synthesized via α-epoxidation followed by glycosylation to produce the DE disaccharide shown below; coupling of this molecule with the thiofucosyl donor (with fucose being a hexose deoxy sugar) selectively produced the α-trisaccharide. The conditions screened that produced the highest yield, 80%, were Cp2Zr(OTf)2 with 5:1 toluene:THF and 2,6-di-t-butylpyridine(hindered base) in the dark over 72 hours, but the conditions the authors moved forward with produced an impressive 78% yield in only 4 hours:
That's not so scary - silver triflate draws the chlorine away from TolSCl, which pulls -STol in after the alcohol displaces it. The next step involved a (to me) funky iodine reagent, I(coll)2ClO4 to promote iodosulfonimidation of the now DEF glycol. The sulfonamide blocks any attack from the bottom face of the ring, forcing the nucleophile in the next step to attack from the top to form the β-isomer. Treatment of the crude intermediate with lithium ethanethiolate leads to the complete DEF donor in 75%, ready for coupling with the ABC acceptor.
The last coupling proceeds without fuss in 72% yield after treatment with methyl triflate. Deprotection of TIPS with TBAF and Bn with sodium reducing conditions followed by global peracetylation leads to the target hexasaccharide:
The last steps to append this molecule to the carrier protein KLH (keyhole limpet hemocyanin) were previously published by Danishefsky and co-workers, as was to covalently link the molecule to an amide (doi: 10.3987/COM-08-S(D)82). I'll add those as soon as Heterocycles loads on my work laptop tomorrow.
No comments:
Post a Comment
Constructive criticism welcome; criticism for judgement's sake, not.